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Two-station narrow-band AVLBI requires phase connections between consecutive
scans. This article presents an efficient computer-aided scheme for this purpose. This
scheme is an iteration process alternating between a grand fit on many scans and integer
quantization of the phase-shift cycles to be assigned to the scans. Only linear simultaneous
equations of a few unknowns need to be solved. A simulation analysis indicates that
faultless phase connection can be expected when there is no localized systematic noise.
When systematic noise of moderate level exists, the possible incorrect phase connection
can be detected and corrected for by comparing the connected phases from the two
alternating observations, after removing the residual diurnal effects.

I. Introduction

Narrow-band AVLBI (Differential Very Long Baseline
Interferometry) has been considered as one of the possible
accurate spacecraft tracking systems. A demonstration plan
has been made for Voyager spacecraft during Jupiter encoun-
ters in 1979 (Ref. 1). As is well known, narrow-band AVLBI
requires a long pass (3-4 hr) of tracking so that its diurnal
signature can resolve, in two orthogonal directions, the angu-
lar separation between spacecraft (S§/C) and an angularly
nearby extragalactic radio source (EGRS). On the other hand,
with 2-station mode, which is most likely the case, S/C and
EGRS observations are taken alternately and gaps in each
data stream are inevitable. The resulting interferometric
phase of each continuous data segment (scan) has a 2nw
ambiguity with different n for different segments. To recover
the correct diurnal signature of each data stream, the inter-
ferometric phases of the corresponding scans have to be con-
nected with correct 2nm phase shift assigned to each scan.

Such phase connection, if done manually by “eyeballing”
the variations of the phases, is not only time consuming and
tedious but may result in incorrect integer n since the phase
change across the gap may be as large as tens of cycles.

This article presents an efficient computer-aided phase-
connection scheme. A simulation analysis shows that the
scheme works faultlessly when there is no systematic noise
such as clock drift or localized media effects. When such
localized fluctuation exists, the scheme may assign incorrect
integer cycle adjustments to some scans. This can easily be
detected and corrected for by a phase validation scheme.

It should be pointed out that for a successful phase connec-
tion, either manually or by a computer, the effect of the
earth’s spin should be modeled out and only the ‘‘residual
phases” need be connected.
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Il. The Grand Fit

When manually connecting the phases, one would fit each
scan by a straight line and then try to connect two consecu-
tive scans at one time by shifting one of them up or down by
2n7 such that they look continuous. This appears no problem
only when the two fitted straight lines have the same slopes;
ambiguity arises when the slopes are different, as may happen
in practice. Higher-order fit may seem to resolve this problem.
However, an independent higher-order fit on each scan is
prone to error due to a limited number of noise-affected data
points in a scan. Consequently, a grand fit on as many scans
as possible simultaneously is desirable for a computer-aided
phase-connection scheme.

It is well known that most, if not all, fitting (optimization)
algorithms require the solved-for parameters to be continuous
over the region of interest. However, the integers n of concern
are discrete numbers. A grand fit with such constraint
imposed' becomes nonlinear and annoying. The present
scheme does the grand fit free from such constraint and allows
the parameters 7 to assume any value. An iterative process is
then performed to successively quantize these values of n into
integers. The iterative process will be discussed in Section III.

Let the measured residual phase of the ith data point in the
jth scan be denoted as qbi’j; let there be J scans to be included
in a single grand fit and /; data points in the jth scan. Then for
a grand fit of order M one needs to minimize the following
function with respect to 4,, and x;:
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where 7; ; is the time. The symbol x; has been used in place of
n to denote its role as a continuous variable.

Since only relative phases are needed we can arbitrarily
set x, = 0. Then (1) is replaced by
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IFor instance, a penalty function (1 — cos mx) can be added onto

the function to be minimized (cf. Eq. 2).
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To minimize (2) its partial derivatives with respect to a,,
a;, ..., ayand x,, x5, ... X; are set to zero. With some
manipulations these become
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Equations (3) and (4) are M +.J simultaneous linear equations
for the M +J unknowns a,, and x;. A further reduction of this
system of linear equations can be done by substituting each
x; from (4) into (3). This yields
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Hence, a system of M + 1 linear equations for g, is resulted.

This can be written in the following matrix form:
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where [ | denotes a square matrix and { } a column matrix.
The elements of {s] and {& } are
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In practice, M = 2 or 3 will suffice and the solutions of a,,,
arc straightforward. Once the coefficients a,, have been deter-
mined, the phase shift parameters x; are calculated according
to (4):
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lll. teration Process of Integer Quantization
for xj

The phase-shift parameters x; determined by a grand fit in
the preceding section will in general differ from integers. If
the differences are all small, one may conceivably set them
equal to the integers they approximate. However, if the
differences are not all small, one may hesitate to equate x; to
an integer. However, the following iteration bears out the
method.

From (1) it is obvious that any variation in x; from correct
integers induces corresponding changes in the fitted coeffi-
cients a,,. Let the change ineacha, beo,,m=0,1,... M
Then the variation in x; can be expressed, according to (9), as
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This implies that the variation x; from the correct integers
increases with 1 In other words, the first few x; are much
closer to the correct integers than the remaining x;. Hence,
one can comfortably set the first few x; to the nearest integers.
With these integers fixed, another grand fit is performed to
improve a,, and the remaining x;. The first few improved x;
will now be closer to the correct integers and can be quantized
with greater confidence. This process is repeated until all x;
are quantized into integers.

After each grand fit, the criterion of setting the first x; to
the nearby integer can be more relaxed, as this x; is more
likely to be very nearly an integer. On the other hand it is
more probable for the remaining x;’s to miss the correct
integer values by an amount greater than 1/2 and the criterion
should be made more stringent. In the proposed scheme the
allowable variation is chosen to be 0.4 for the first X; after
each grand fit: for each of the remaining X, both X; and Xy
must have a variation <0.1.

IV. Simulation Analysis

The flow chart of the phase-connection scheme is shown in
Fig. 1. The order of the polymonial to be fitted is assigned. In
most cases a second- or third-order polynomial will be suffi-
cient. The simulated phase data are generated with the follow-
ing parameters:

data density = | per minute

gap widthr= W = an integer multiple of a minute
number of data points per scan = /, a variable parameter
data noise = 0, a variable parameter

pass length = 3 hours

number of scans =J = (3 X 60)/(W + [) rounded to the next
lowest integer

a, = 0.5 rad/s
a,=0,-5X 107% -1 X 107% rad/s’
a,=0,5X 1077 rad/s’

3
Z a "+ 0 - 2n.7m with n. to be such that
m ij 7 /

"
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Both M = 2 and M = 3 are tried for the fit. The following
inferences are drawn from the simulation:

(1) While higher order M for the polynomial to be fitted
may be chosen even when a, =44 = 0 in the simulated
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phase data, a lower-order polynomial is less susceptible
to data noise. Hence one may start with a higher-order
polynomial and decrease the order upon failure in
phase connection.

(2) As few as 2 data points per scan are allowable for a
successful phase connection provided the gap width
and the data noise are reasonably small.

(3) Given a data density and a gap-width-to-data-span ratio
the success in phase connection degrades as data noise
¢ increases but seems independent of the gap width, at
least for gap width < 10 minutes. This relaxes the gap
width limit for minimum data loss when time offset
between S/C and EGRS observations is called for
(Ref. 2).

(4) The maximum data noise above which phase connec-
tion may fail decreases with increasing gap-width-to-
data-span ratio. Figure 2 is an example with 5-minute
data span (per scan) over three hours. When there is no
localized fluctuation due to systematic noise, a typical
AVLBI pass? will fall well within the convergence
range, as shown in the figure.

V. Grouping of Scans in a Single Grand Fit

As pointed out in Section II, it is desirable to include as
many scans as possible in a single grand fit. However, a prob-
lem arises when sizable localized phase fluctuations exist
among scans included in a single grand fit: A low-order poly-
nomial may lose track of these fluctuations while a polynomial
of higher order may degrade the convergence of the iteration
process. Hence an appropriate grouping of scans in a single
fit is essential.

A criterion to determine the grouping of scans is the change
in slope of the straight lines fitted to the consecutive scans.
Two consecutive scans are to be grouped together if the slopes
of their fitted straight lines satisfy

(11

IS]. - S]._1 | - (0].2 + 01,2“1)1/2 < 1 mHz

where S]. and o; are the slope and its uncertainty of scan j.
The number of scans J in a group increases until (11) fails.
When this number of scans J is determined, the order of
polynomial is selected to be

M=J, if J<5
(12)

M=15if J>5

28/N = 5 corresponding to o = 0.2 rad, and gap width/data span = 1.2,
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The order of fit M is to be decreased by 1 upon failure of con-
vergence in the iteration and a new fit is tried. If the iteration
does not converge for all M= 2 the last scan in the group is
removed from the fit, the largest M according to (12) is
selected and the process repeats.

It is obvious that phase connection is redundant for a group
with fewer than two scans. When the number of scans reduces
to 2, due to the failure of either (11) or in the iteration pro-
cess, the slope test of (11) is to be ignored. Also, the allowable
deviation of the fitted x; away from an integer is to be relaxed
to 0.5 to exclude any failure in the iteration process. The
actual deviation e, of each fitted x; from its quantized value
can serve as an indication of the degree of confidence in the

resulting phase connection.

VI. Validation of Connected Phases

The phase-connection scheme discussed in the preceding
sections works faultlessly when there is no localized phase
fluctuations. Because of irregularities in transmission media
(ionosphere in particular) and instability of electronic signal
path, localized fluctuations do exist. When such fluctuations
are sizable, not only do we need to divide the scans into
several groups in connecting phases, but also some of the scans
may be assigned incorrect cycle adjustments. To guard against
such danger, the following phase validation process will be
necessary.

Since the residual phases from S/C and EGRS are each
independently connected, an approach of phase validation is
to bring the two connected phases together and examine
whether their variation is continuous over the pass. However,
such examination is indicative only if the two residual phases
have identical residual model errors. The residual model
errors in frequency offset are identical since common fre-
quency standards are used for both signals. Bascline error is
not identical even though the same baseline is used, owing to
different baseline projections onto the planes of sky in the two
different directions of the two sources. Angular position (right
ascension and declination) error is also different. Since both
baseline error and angular position error appear in the form of
residual diurnal variation, they can be easily removed by
fitting 4 cos w, ¢ + B sin w, ¢ to each of S/C and EGRS
residual phases, where w, is the earth’s spinning rate. In
practice, two more terms, Ct + D, are needed to remove the
residual frequency offset and phase offset. This is a simple
linear least-squares fit with four degrees of freedom.?

3Altematively, a simultaneous fit for S/C and EGRS phases with
common frequency offset term can be adopted. The degrees of free-
dom become 7.



After removing the residual model errors, the S/C and
EGRS phases are plotted on the same graph. This can be done
handily by print-plotting on standard computer print. Now
comes the time for inspection. Unfortunately, this has to be
done by eyeballing at the present time. This is best illustrated
by an example of the actual AVLBI pass. Figure 3 shows the
connected phases of Voyager 1 and OJ 287 with their residual
model errors removed. Two consecutive scans from the same
source (S/C or quasar) are considered “continuous” if the
phase change across the gap is consistent with the phase
change in the intervening scan from the other source. A quick
glance over the graph reveals that there are discontinuities
between scans 2 and 3 of S/C phase and between the last two
scans of quasar phase. When these two l-cycle adjustments
are made, the phases after removing the updated residual
model errors are shown in Fig. 4. No obvious discontinuity
remains and the adjustments are validated. Normally only one
or two iterations of adjustment are needed to eliminate all
offensive discontinuities.

There has been concern that when a clock without ex-
tremely high stability is used, phase connection may fail. By
the above phase validation scheme, incorrectly connected
phases can still be detected and corrected as long as the phase

drift due to clock instability is continuous (i.e., no phase
jumps occur). Figure 5 is an example where rubidium clock
was used at one end of the baseline. A discontinuity is detected
between the last second and third scans of the S/C phase.
After a l-cycle adjustment the phases are shown in Fig. 6.
Again, no obvious discontinuity remains. It should be noted
that the gross effect of the clock drift has been absorbed by
the fitting functions and only the residual “random walk”
effect remains.

VIl. Conclusions

A computer-aided, phase-connection scheme has been
developed. A simulation analysis shows that, when there is
no sizable localized phase fluctuation, this scheme connects
VLBI residual phases faultlessly. When there are localized
phase fluctuations the scheme may assign incorrect cycle
adjustments to some of the scans. This can easily be detected
and corrected for by a phase validation scheme. Currently
this validation process requires an eyeballing inspection. A
means to validate the connected phases automatically is cur-
rently being sought.

References

1. Brunn, D. L., et at., DSN Progress Report, 42-45, 15 June 1978, pp. 111-132.
2. Wu, S. C., IOM 315.1-296, June 12, 1978 (JPL internal document).

17



18

i =K - |- i+1=K

DATA NOISE, rad

n+1 -xi—bex.

n+ l—ex

NO
CONNECTION FAILS CONNECTION DONE

Fig. 1. Flow chart of phase-connection scheme
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